

PII: S0040-4039(97)00936-2

Competitive Rearrangements of Alkylacetoxycarbenes

Robert A. Moss,* Song Xue, Wei Ma, and Huarong Ma

Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903

Summary. Absolute rate constants are determined for (1,2) acetyl, carbon, and hydride shifts in cyclobutylacetoxycarbene and isopropylacetoxycarbene; comparative reactivities are examined. © 1997 Elsevier Science Ltd.

The signature intramolecular reaction of an acyloxycarbene is 1,2-acyl migration to give a 1,2-dione; the 1,2-acetyl shift of phenylacetoxycarbene (1) to dione 2 ($k_{Ac} = 1.3 \times 10^5 \text{ s}^{-1}$) is an archetypal example.¹⁻³ The analogous benzoyl shift of phenylbenzoyloxycarbene (3) to benzil occurs with $k_{\text{PhCO}} = 6.7 \times 10^5 \text{ s}^1$, $E_a = 8.4$ kcal/mol, and $\Delta S^{\ddagger} = -5.0$ eu (298 K).² Ω

$$
\begin{array}{ccccccc}\n & & & & & \text{O} & & & \text{O} & & \text{O} \\
& & & & & & \text{Ph-C-CCH}_3 & \text{Ph-C-OCPh} & \text{PhOCH}_2-C-OCCH}_3 & & & & \text{O} & \text{C-OCCH}_3 & \text{O} & \text{O} & \text{O} & \text{O} & \text{O} & \text{O} \\
& & & & & \text{Ph-C-CCH}_3 & \text{Ph-C-OCPh} & \text{PhOCH}_2-C-OCCH}_3 & & & & & \text{O} \\
& & & & & \text{Ph-C-OCPh} & \text{PhOCH}_2-C-OCCH}_3 & & & & & \text{O} \\
& & & & & \text{Ph-C-OCPh} & \text{PhOCH}_2-C-OCCH}_3 & & & & & \text{O} & \text{O}
$$

These are relatively "slow" intramolecular rearrangements,⁴ so that it is unsurprising that phenoxymethylacetoxycarbene (4) undergoes a phenoxy-stimulated 1,2-H shift $(k_H = 4.1 \times 10^6 \text{ s}^3)$ in kinetic preference to acetyl migration.^{1,2} Similarly, benzocyclobutenylacetoxycarbene (5) offers a π -mediated, "phenyl" 1,2-C shift/ring expansion to 3-acetoxyindene ($k_e = 8.5 \times 10^6 \text{ s}^{-1}$) rather than acetyl migraton.⁵

Although acetyl shifts are not competitive for carbenes 4 or 5, the (deactivating) *electronic* influence² of the acetoxy substituent is evident: k_H of 4 is 8.8 or 3.2 times smaller than in the analogous chloro- or fluorocarbenes, respectively.⁶ Similarly, ring expansion of 5 is 4.4 times slower than that of benzocyclobutenylfluorocarbene ($k_c = 3.8 \times 10^7 \text{ s}^{-1}$).⁵

Can acetyl migrations effectively compete with carbon and hydride shifts in the *same* carbene? In affirmative response, we describe the chemistry, rearrangement kinetics, and comparative reactivities of isopropylacetoxycarbene $(i$ -PrCOAc, 6) and cyclobutylacetoxycarbene (CbCOAc, 7).

The carbenes were generated from diazirines 8 and 9, which were obtained from "modified" Graham oxidations⁷ of isopropyl- or cyclobutylamidine⁸ hydrochlorides. Diazirine exchange reactions of isopropyl- or cyclobutylbromodiazirine with acetate⁹ failed to afford acetoxydiazirines $\boldsymbol{8}$ or $\boldsymbol{9}$. Therefore, 0.3 mol of isopropylamidinium chloride in DMSO (containing 0.3 mol of LiOAc) and pentane was stirred and oxidized by excess 12% aqueous NaOCI solution *(saturated* with NaOAc) at 30-35 °C. Silica gel chromatography of the water-washed, dried, and concentrated pentane extract of the reaction mixture gave \sim 10% of 8 (1:2 CH₂Cl₂/

4379

pentane, $R_f = 0.6$; the accompanying 40% of isopropylchlorodiazirine had $R_f = 0.9$). Diazirine 8 (λ_{max} , pentane, 338, 354 rim) gave an appropriate NMR spectrum. An analogous oxidation of cyclobutylamidinium chloride gave ~10% of diazirine 9 (λ_{max} 342, 356 nm, R_f = 0.5), accompanied by ~40% of the chlorodiazirine $(R_f = 0.8)$.

Photolysis of diazirine 8 in pentane ($A_{338} = 0.8$, Rayonet reactor, 16, 8 W 350 nm lamps, 15 min 25 °C) afforded \sim 30% of 1-acetoxy-2-methylpropene (10), a comparable yield of 4-methylpentane-2,3-dione (11), 5% of the dimer of carbene 6, and several unidentified minor products. The structures of 10 and 11 were established by NMR, GC-MS, and comparisons to authentic materials synthesized from acetic anhydride and isobutyraldehyde¹⁰ (for 10), or 4-methyl-2-pentene and KMnO₄ in cold acetic anhydride¹¹ (for 11). Products 10 and 11 stem from 1,2-H or 1,2-acetyl rearrangements of 6, respectively.¹²

Analogous photolysis of diazirine 9 ($A_{342} = 0.1$, 1 hr, 25 °C) afforded carbene 7, and thence the Acshift product 12, the H-shift product 13, and the C-shift/ring expansion product acetoxycyclopentene (14), as well as the carbene dimer (3.8%) . Primary products 12, 13, and 14 constituted \sim 70% of the crude photolysate, and were formed in a distribution of $32 : 1.0 : 2.5$, respectively (capillary GC).

Again, products were identified by NMR, GC-MS, and comparisons to independently synthesized authentic samples. Enol acetates 13 or 14 were prepared from cyclobutanecarboxyaldehyde or cyclopentanone in reactions with acetic anhydride,¹⁰ whereas dione 12 was obtained by $KMnO₄$ oxidation¹¹ of 1-cyclobutylpropene, prepared by Wittig olefination of cyclobutane carboxyaldehyde. The dimer of carbene 7 was identified by GC-MS (exact mass).

Absolute rate constants were obtained by laser flash photolysis $(LFP)^2$ using the pyridine ylide method.¹³ LFP of 9 ($A_{342} = 0.1$, 20 °C) in pentane containing 1.1 - 5.5 mM pyridine gave carbene 7, and thence its pyridine ylide (λ_{max} 390 nm). From the slope of the observed linear dependence ($r = 0.997$, 5 points) of the observed rate constants for ylide formation vs. [pyridine], we obtained $k_{\text{video}} = 4.85 \times 10^8 \text{ M}^1 \text{s}^{-1}$ for the second order reaction between 7 and pyridine. Extrapolation of the correlation to [pyridine] = 0 gave an intercept $(k) = 4.98 \times 10^5 \text{ s}^{-1}$, taken as the aggregate rate constant for the processes that destroy carbene 7 in

Carbene	Migrant	k_{re} , s ⁻¹	Reference
	Ac	1.3×10^{5}	
	н	4.1 x 10^6	
PhOCH ₂ CC1	H	3.6×10^{7}	
PhOCH ₂ CF	H	1.3×10^{7}	
5	C	8.5×10^{6}	
7	Ac	4.0×10^{5}	c
	C	3.2×10^{4}	c
	н	1.3×10^{4}	c
CbcCl ^d	C	5.6 x 10^{7}	16
	Н	1.2×10^{7}	16
CbCF ^d	C	1.8×10^{6}	6
	Н	5.3 x 10^5	6
6	Ac	4.0×10^{6}	c
	H	4.0×10^{6}	c
Me ₂ CHCCl	H	$>5.0 \times 10^{7}$ e	17

Table 1. Rate Constants for Intramolecular Carbenic Rearrangements^a

^aIn hydrocarbon solvents, 20-25 °C, ^bAt -32 °C. ^cThis work. ^dCb = Cyclobutyl. ^eAt -90 °C.

the absence of pyridine. Partition of k according to the distribution of 12-14 (and dimer) afforded $k_{Ac} = 4.0$ x 10^5 s⁻¹ (7->12), $k_H = 1.3 \times 10^4$ s⁻¹ (7->13), and $k_c = 3.2 \times 10^4$ s⁻¹ (7->14).¹⁴

For carbene 6, the rearrangement rate constants were determined indirectly because of the low yields. Photolytically generated 6 could be trapped in >90% yield by methyl acrylate (MeAcr).¹⁵ LFP of diazirine 8 $(A_{338} = 0.8, 25 \degree C)$ in pentane containing 12.4 mM pyridine and variable concentrations (0 - 0.52 M) of MeAcr afforded the ylide derived from 6 and pyridine (λ_{max} 380 nm). A correlation of the observed rate constants for ylide formation with [MeAcr] was linear ($r = 0.993$ for 6 points, $k_{\text{video}} = 1.28 - 1.93 \times 10^7 \text{ s}^{-1}$) with a slope of 1.30 x 10⁷ M⁻¹s⁻¹ which can be taken¹³ as k_{add} for the addition of 6 to MeAcr. Photolysis of 8 in 0.556 M MeAcr in pentane gave 10, 11, and the carbene/MeAcr adducts.¹⁵ From the (corrected) capillary GC product ratios (0.55 : 0.56 : 1), and k_{add} , we calculate $k_{\text{Ac}} = 4.0 \times 10^6 \text{ s}^{-1}$ and $k_{\text{H}} = 4.0 \times 10^6 \text{ s}^{-1}$ for the intramolecular acetyl and hydride migrations of i-PrCOAc.

Table 1 collects rate constants for the present rearrangements, as well as analogous processes of related carbenes.^{16.17} Clearly, for CbCOAc (7) and *i*-PrCOAc (6), 1,2-acetyl shifts are highly competitive with 1,2-C and 1,2-H migrations. In the former case, ~Ac is an order of magnitude faster than the more common processes, whereas with 6 , \sim Ac and \sim H are comparable in rate.

On the other hand, the electron-donating stabilizing effect of $OAc²$ slows the H-shift of *i*-PrCOAc by $>$ 12 times, relative to *i*-PrCCI,¹⁷ here permitting the first reasonably precise kinetic measurement of the 1,2-H shift of an isopropylcarbene.¹⁸ Kinetic stabilization by OAc as a "spectator substituent" is strikingly apparent upon comparison of CbCOAc to CbCC1 and CbCF (Table l). The 1,2-C and 1,2-H migrations of 7 are,

respectively, 1750 and 923 times slower than the analogous rearrangements of CbCC1 (56 and 41 times slower in comparison to CbCF).

Relative to i-PrCOAc, the 1,2-acetyl shift of CbCOAc is 10 times slower, presumably due to superior electron-donating cyclobutyl stabilization of the vacant carbenic p orbital.8 At the same time, the 1,2-H shift of i-PrCOAc is 308 times faster than that of CbCOAc. H-shifts of cyclobutylcarbenes are slower than those of acyclic *sec*-alkylcarbenes¹⁹ because the imposition of δ^* on the cyclobutyl carbon during hydride migration is unfavorable, and because the Cb-H bond is stronger than the Me₂C-H bond. Strain in product 13 may also impede this rearrangement.

Finally, comparison of CbCOAc with its benzo analogue (5) reveals that the " π -mediated" C-shift of the latter⁵ is 21 times faster than the Ac-shift of CbCOAc, and 266 times faster than the 1,2-C shift of CbCOAc. These kinetic advantages are in accord with the observed exclusive, chemospecific ring expansion.

Acknowledgment. We are grateful to the National Science Foundation for financial support.

References and Notes

- (1) Moss, R.A.; Xue, S.; Liu, W. J. *Am. Chem. Soc.* 1994, *116,* 1583.
- (2) Moss, R.A.; Xue, S.; Liu, W.; Krogh-Jespersen, *K. J. Am. Chem. Soc.* 1996, *118,* 12588.
- (3) Unless otherwise indicated, absolute rate constants refer to reactions in pentane or isooctane at 20-25 °C. Errors are ±10-15%.
- (4) Moss, R.A. In *Advances in Carbene Chemistry;* Brinker, U.H., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 1, pp 59ff.
- (5) Moss, R.A.; Xue, S.; Sauers, R.R.J. *Am. Chem. Soc.* 1996, *118,* 10307.
- (6) Moss, R.A.; Ho, G-J.; Liu, W. *J. Am. Chem. Soc.* 1992, 114 , 959. k_H for PhCH₂OCX (X = Cl or F) was measured at -32 °C.
- (7) Graham, W.H.J. *Am. Chem. Soc.* 1965, *87,* 4396.
- (8) Moss, R.A.; Fantina, M.E.; Munjal, R.C. *Tetrahedron Lett.* 1979, *20,* 1277.
- (9) Moss, R.A.; Xue, S.; Liu, W. J. *Am. Chem. Soc.* 1994, *116,* 10821.
- (10) Cousineau, T.J.; Cook, S.L; Secrist, J.A., III *Synth. Commun.* 1979, 9, 157.
- (11) Sharpless, K.B.; Lauer, R.F.; Repic, O.; Teranishi, A.Y.; Williams, D.R.J. *Am. Chem. Soc.* 1971, *93,* 3303.
- (12) Capillary GC gives 10:11 as 0.96:1. The dione is unstable to photolysis at λ <350 nm, but is stable under the described photochemical conditions.
- (13) Jackson, J.E.; Soundararajan, N.; Platz, M.S.; Liu, M.T.H.J. *Am. Chem. Soc.* 1988, *110,* 5595.
- (14) These rate constants are likely to be too high by 10-15% because 12-14 only account for \sim 70% of the carbene; there are several minor unknowns. Product formation directly from excited diazirine⁴ is an unlikely complication because diazirine-generated alkylacetoxycarbenes (e.g., 4 , λ^2 and 6, see below) can be almost quantitatively scavenged by alkenes with the disappearance of rearrangement products.
- (15) The isomeric cyclopropane products were characterized by NMR and an exact mass measurement.
- (16) Moss, R.A.; Ho, G-J. J. *Phys. Org. Chem.* 1993, 6, 126.
- (17) Liu, M.T.H.; Bonneau, R. J. *Am. Chem. Soc.* 1996, *118,* 8098.
- (18) Parallel decelerations of 1,2-H shifts were noted above in comparisons of acetoxycarbene 4 with its CI and F analogues; see also Table 1.
- (19) Compare the 1,2-H shifts of CbCCI and i-PrCCI in Table 1.

(Received in USA 3 April 1997; *accepted 8 May* 1997)