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The signature intramolecular reaction of an acyloxycarbene is 1,2-acyl migration to give a 1,2-dione; 

the 1,2-acetyl shift of phenylacetoxycarbene (1) to dione 2 (kAc = 1.3 x 105 s -l) is an archetypal example. ~-3 

The analogous benzoyl shift of phenylbenzoyloxycarbene (3) to benzil occurs with kphco = 6.7 x 105 s -~, 

Ea = 8.4 kcal/mol, and AS: = -5.0 eu (298 K). 2 
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These are relatively "slow" intramolecular rearrangements, 4 so that it is unsurprising that 

phenoxymethylacetoxycarbene (4) undergoes a phenoxy-stimulated 1,2-H shift (kH = 4.1 x 106 s "l) in kinetic 

preference to acetyl migration. ~'2 Similarly, benzocyclobutenylacetoxycarbene (5) offers a n-mediated, 

"phenyl" 1,2-C shift/ring expansion to 3-acetoxyindene (kc = 8.5 x 106 s -1) rather than acetyl migraton. -~ 

Although acetyl shifts are not competitive for carbenes 4 or 5, the (deactivating) electronic influence 2 

of the acetoxy substituent is evident: kH of 4 is 8.8 or 3.2 times smaller than in the analogous chloro- or 

fluorocarbenes, respectively. 6 Similarly, ring expansion of 5 is 4.4 times slower than that of benzocyclo- 

butenylfluorocarbene (kc = 3.8 x 107 s-l). 5 

Can acetyl migrations effectively compete with carbon and hydride shifts in the same carbene? In 

affirmative response, we describe the chemistry, rearrangement kinetics, and comparative reactivities of 

isopropylacetoxycarbene (i-PrCOAc, 6) and cyclobutylacetoxycarbene (CbCOAc, 7). 

The carbenes were generated from diazirines 8 and 9, which were obtained from "modified" Graham 

oxidations 7 of isopropyl- or cyclobutylamidine 8 hydrochlorides. Diazirine exchange reactions of isopropyl- or 

cyclobutylbromodiazirine with acetate 9 failed to afford acetoxydiazirines 8 or 9. Therefore, 0.3 mol of 

isopropylamidinium chloride in DMSO (containing 0.3 mol of LiOAc) and pentane was stirred and oxidized by 

excess 12% aqueous NaOCI solution (saturated with NaOAc) at 30-35 °C. Silica gel chromatography of the 

water-washed, dried, and concentrated pentane extract of the reaction mixture gave -10% of 8 (1:2 CH2CI2/ 
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pentane, R/= 0.6; the accompanying 40% of isopropylchlorodiazirine had R/= 0.9). Diazirine 8 (?~ma~, 

pentane, 338, 354 rim) gave an appropriate NMR spectrum. An analogous oxidation of cyclobutylamidinium 

chloride gave - 10% of diazirine 9 (Xma~ 342, 356 rim, Rt = 0.5), accompanied by -40% of the chlorodiazirine 

(R/= 0.8). 

Photolysis of diazirine 8 in pentane (A338 = 0.8, Rayonet reactor, 16, 8 W 350 nm lamps, 15 min 25 °C) 

afforded -30% of 1-acetoxy-2-methylpropene (10), a comparable yield of 4-methylpentane-2,3-dione (11), 5% 

of the dimer of carbene 6, and several unidentified minor products. The structures of 10 and 11 were 

established by NMR, GC-MS, and comparisons to authentic materials synthesized from acetic anhydride and 

isobutyraldehyde I° (for 10), or 4-methyl-2-pentene and KMnO4 in cold acetic anhydride l~ (for 11). Products 

10 and 11 stem from 1,2-H or 1,2-acetyl rearrangements of 6, respectively) z 

Analogous photolysis of diazirine 9 (A342 = 0 .  l ,  1 hr, 25 °C) afforded carbene 7, and thence the Ac- 

shift product 12, the H-shift product 13, and the C-shift/ring expansion product acetoxycyclopentene (14), as 

well as the carbene dimer (3.8%). Primary products 12, 13, and 14 constituted -70% of the crude 

photolysate, and were formed in a distribution of 32 : 1.0 : 2.5, respectively (capillary GC). 

Again, products were identified by NMR, GC-MS, and comparisons to independently synthesized 

authentic samples. Enol acetates 13 or 14 were prepared from cyclobutanecarboxyaldehyde or cyclopentanone 

in reactions with acetic anhydride, ~° whereas dione 12 was obtained by KMnO4 oxidation ~ of 

1-cyclobutylpropene, prepared by Wittig olefination of cyclobutane carboxyaldehyde. The dimer of carbene 7 

was identified by GC-MS (exact mass). 
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Absolute rate constants were obtained by laser flash photolysis (LFP) 2 using the pyridine ylide 

method. 13 LFP of 9 (A342 = 0.1,20 °C) in pentane containing 1.1 - 5.5 mM pyridine gave carbene 7, and 

thence its pyridine ylide (Xm~x 390 nm). From the slope of the observed linear dependence (r = 0.997, 5 points) 

of the observed rate constants for ylide formation vs. [pyridine], we obtained kylide = 4.85 X 1 0  8 M ' I S  -l for the 

second order reaction between 7 and pyridine. Extrapolation of the correlation to [pyridine] = 0 gave an 

intercept (k) = 4.98 x 105 s -~, taken as the aggregate rate constant for the processes that destroy carbene 7 in 
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Table  1. Rate Constants for Intramolecular Carbenic Rearrangements ~ 

Carbene Migrant kre, s -~ Reference 

1 Ac 1.3 x 105 2 
4 H 4.1 x 106 2 

PhOCH2CCI H 3.6 X 10 7b 6 
PhOCH2CF H 1.3 x 107 b 6 

5 C 8.5 x 106 5 
7 Ac 4.0 x 105 c 

C 3.2 x 104 c 
H 1.3 x 10 a c 

CbCCl d C 5.6 x 107 16 
H 1.2 x l 0  7 16 

CbCF d C 1.8 x 106 6 
H 5.3 x 105 6 

6 Ac 4.0 X 106 C 
H 4.0 × 106 c 

Me2CHCCI H >5.0 X 10 7 e 17 

aln hydrocarbon solvents, 20-25 °C, bAt -32 °C. CThis work. dcb = Cyclobutyl. eAt -90 °C. 

the absence of pyridine. Partition of k according to the distribution of 12-14 (and dimer) afforded kAc = 4.0 x 

105 s -1 (7--->12), k ,  = 1.3 x l 0  4 s -1 (7--->13), and kc = 3.2 x 10 4 s "1 (7--->14). 14 

For carbene 6, the rearrangement rate constants were determined indirectly because of the low yields. 

Photolytically generated 6 could be trapped in >90% yield by methyl acrylate (MeAcr). t5 LFP of diazirine 8 

(A338 = 0.8, 25 °C) in pentane containing 12.4 mM pyridine and variable concentrations (0 - 0.52 M) of MeAcr 

afforded the ylide derived from 6 and pyridine (~m= 380 rim). A correlation of the observed rate constants for 

ylide formation with [MeAcr] was linear (r = 0.993 for 6 points, kylide = 1.28 - 1.93 x 10  7 s -l) with a slope of 

1.30 x 107 M l s  -I which can be taken ~3 as  kadd for the addition of 6 to MeAcr. Photolysis of 8 in 0.556 M 

MeAcr in pentane gave 10, 11, and the carbene/MeAcr adducts. 15 From the (corrected) capillary GC product 

ratios (0.55 : 0.56 : l), and kadd, we calculate kAc = 4.0 x 10  6 s -I and kH = 4.0 x l06 s -l for the intramolecular 

acetyl and hydride migrations of i-PrCOAc. 

Table ! collects rate constants for the present rearrangements, as well as analogous processes of 

related carbenes. ~6: Clearly, for CbCOAc (7) and i-PrCOAc (6), 1,2-acetyl shifts are highly competitive with 

1,2-C and 1,2-H migrations. In the former case, ~Ac is an order of magnitude faster than the more common 

processes, whereas with 6, - A c  and - H  are comparable in rate. 

On the other hand, the electron-donating stabilizing effect of OAc 2 slows the H-shift of i-PrCOAc by 

>l 2 times, relative to i-PrCCI, ~7 here permitting the first reasonably precise kinetic measurement of the 1,2-H 

shift of an isopropylcarbene) 8 Kinetic stabilization by OAc as a "spectator substituent" is strikingly apparent 

upon comparison of CbCOAc to CbCC1 and CbCF (Table l). The 1,2-C and 1,2-H migrations of 7 are, 



4382 

respectively, 1750 and 923 times slower than the analogous rearrangements of CbCC1 (56 and 41 times slower 

in comparison to CbCF). 

Relative to i-PrCOAc, the 1,2-acetyl shift of CbCOAc is 10 times slower, presumably due to superior 

electron-donating cyclobutyl stabilization of the vacant carbenic p orbital.8 At the same time, the 1,2-H shift of 

i-PrCOAc is 308 times faster than that of CbCOAc. H-shifts of cyclobutylcarbenes are slower than those of 

acyclic sec-alkylcarbenes 19 because the imposition of 8 ÷ on the cyclobutyl carbon during hydride migration is 

unfavorable, and because the Cb-H bond is stronger than the Me2C-H bond. Strain in product 13 may also 

impede this rearrangement. 

Finally, comparison of CbCOAc with its benzo analogue (5) reveals that the "n-mediated" C-shift of 

the latter 5 is 21 times faster than the Ac-shift of CbCOAc, and 266 times faster than the 1,2-C shift of 

CbCOAc. These kinetic advantages are in accord with the observed exclusive, chemospecific ring expansion. 
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